CS-202 Exercises on Network Layer: IP & Routing (L15-L.16)

Before we start

A few basic rules on how to allocate an IP prefix to a subnet:

An IP prefix A/M is the range of IP addresses whose M most significant bits are the
same as A’s M most significant bits. E.g., 10.0.0.16 belongs to IP prefix 10.0.0.0/24 ,
because the 24 most significant bits of 10.0.0.16 are the same as the 24 most significant
bits of 10.0.0.0.

This implies that a /M IP prefix contains 22 1P addresses. E.g., a /24 1P prefix

24

contains 232_ = 28 = 256 IP addresses. In other words, we don’t have the freedom to

create an [P prefix that contains an arbitrary number of IP addresses, it must always
contain a number that is a power of 2.
/M is called the “subnet mask”, representing the bitmask consisting of M consecutive 1’s
followed by enough 0’s to reach 32 bits. The subnet mask is applied to any IP address
using bitwise AND to obtain the IP range the address belongs to. E.g. 100.52.12.18
belongs to the prefix 100.52.12.16/28 because: (1) the /28 mask represents the mask

, (2) applying the mask to 100.52.12.18 (

in binary) results in 100.52.12.16 (

in binary).
Each IP subnet must have its own IP prefix. Hence, IP prefixes allocated to different IP
subnets must not overlap.

In addition to the network interfaces, each subnet has two IP addresses that are sometimes
reserved for special use:

E.g., the first IP
address in 10.0.0.0/24 is 10.0.0.0. This address is sometimes reserved for special uses,
e.g., a discovery service provided by the subnet.

E.g., the last IP
address in 10.0.0.0/24 is 10.0.0.255. This address is sometimes reserved to be used as the
subnet’s broadcast address, i.e., as the destination IP address for packets that should be
received by all end-systems in a subnet.

In practice, operators do not assign these addresses to any network interface. However, in this
course you are free to assign them to a network interface or not except when it is clearly stated in
the problem description.

Exercise 1: IP prefix allocation

IP subnets A, B and C contain 10, 5, and 3 network interfaces, respectively. Allocate an IP prefix
to each subnet, and assign an IP address to each network interface, from IP prefix 1.2.3.0/27.

Consider two cases for allocating prefixes to subnets. In each case, follow the given order:
(a)A,B,C
(b)B,A,C

In the context of this exercise, when we say that allocation “follows a given order,” we mean
that, if Subnet X comes before Subnet Y in that order, the IP addresses for Subnet X should be
arithmetically smaller than the IP addresses for Subnet Y (in the sense that IP address 1.2.3.4 is
arithmetically smaller than IP address 1.2.3.5).

Note: Allocating addresses might be infeasible in some cases.

A. Network prefix 1.2.3.0/27 contains 2°*~?" = 32 addresses. We need to pick
three subnets from the address space 1.2.3.0 - 1.2.3.31, while satisfying the
requirements from above.

Subnet A must have at least 11 IP addresses (10 for end-systems and 1 for
broadcast address). However, since we need to round to a power of 2 we
will allocate 16 addresses: from 1.2.3.0to 1.2.3.15. Let s represent some of
them in binary format:

0000 0001.0000 0010.0000 0011.0000 0000 = 1.2.3.0
0000 0001.0000 0010.0000 0011.0000 0001 = 1.2.3.1
0000 0001.0000 0010.0000 0011.0000 0010 = 1.2.3.2
0000 0001.0000 0010.0000 0011.0000 0011 = 1.2.3.3

The prefix is 0000 0001.0000 0010.0000 0011.0000 = 1.2.3.0 with length 28, thus
Subnet A is 1.2.3.0/28, or 1.2.3.0 - 1.2.3.15.

Note: to obtain the CIDR notation (that is 1.2.3.0/28), we:

1. Take the binary prefix of the subnet: 0000 0001.0000 0010.0000
0011.0000 0,

2. Append zeros until we obtain 32 bits: 0000 0001.0000 0010.0000
0011.0000 0000,

3. Transform the value into dotted IP notation: 1.2.3.0;
4. Append "/" and the length of the binary prefix: 1.2.3.0/28.

Subnet B needs 6 addresses, so we need to allocate §: from 1.2.3.16 to
1.2.3.23. We expect that the mask has length 29. Let s represent some of the
addresses in binary:

0000 0001.0000 0010.0000 0011.0001 0000 = 1.2.3.16
0000 0001.0000 0010.0000 0011.0001 0001 = 1.2.3.17
0000 0001.0000 0010.0000 0011.0001 0010 = 1.2.3.18

The interval is 1.2.3.16 - 1.2.3.23, and the prefix is 0000 0001.0000
0010.0000 0011.0001 0 with length 29, which corresponds to the
block 1.2.3.16/29.

For Subnet C, we need to allocate 4 addresses. Thus we need a block
with 4 addresses. We try to allocate starting from 1.2.3.24:

0000 0001.0000 0010.0000 0011.0001 10 00 = 1.2.3.24
0000 0001.0000 0010.0000 0011.0001 10 01 = 1.2.3.25
0000 0001.0000 0010.0000 0011.0001 10 10 = 1.2.3.26
0000 0001.0000 0010.0000 0011.0001 10 11 = 1.2.3.27

The interval is 1.2.3.24 - 1.2.3.27, the prefix is 0000 0001.0000
0010.00000 0011.0001 10 with length 30. Thus the CIDR notation is
1.2.3.24/30.

(b) It is not possible to allocate the addresses in this order.

The reason is that you have only two options in how to allocate
addresses for Subnet A (either prefix 1.2.3.0/28 or prefix 1.2.3.16/28).

* If you allocate prefix 1.2.3.0/28 to Subnet A, then there will be no
room to allocate smaller addresses for Subnet B.

* Instead, if you allocate prefix 1.2.3.16/28, there will be no room to
allocate bigger addresses to Subnet C.

Exercise 2: network configuration

Consider the topology shown in Figure 1. There are three IP subnets (A, B and C) that contain
some end-systems, and two IP subnets (D and E) that contain no end-systems. The green boxes
(a, b, c,...g) denote network interfaces for routers R1, R2 and R3.

A

Figure 1: Network Topology.

1. Allocate an IP prefix to each subnet. Your allocation must respect the following
constraints:

All prefixes must be allocated from 214.97.254.0/23.

Subnet A should have enough addresses to support 250 interfaces.

Subnet B should have enough addresses to support 120 interfaces.

Subnet C should have enough addresses to support 60 interfaces.

Each of subnets D and E should have enough addresses to support 2 interfaces.

First, you need to round the number of required addresses (number of
interfaces + 1 for broadcast address) up to the nearest power of two.

Then, a good strategy for allocating subnets on the available address

space is the following:

— Sort the subnets in descending order according to the (rounded)
number of addresses they require

— Start allocating addresses from one end of the address space (e.g.
the beginning)
— For every remaining subnet (following the order in which you

sorted them), allocate the address space after the previously
allocated prefix. (i.e., do not leave gaps between consecutive
subnets)

If you follow this strategy, you can guarantee that every subnet is

well-aligned, and that there will be no gaps between allocated address
blocks.

Nevertheless, there are multiple possible solutions for this exercise.
Here is a possible allocation:

Subnet A: 214.97.254/24 (256 addresses)
Subnet B: 214.97.255.0/25 (128 addresses)
Subnet C: 214.97.255.128/26 (64 addresses)

Subnet D: 214.97.255.192/30 (4 addresses)
Subnet E: 214.97.255.196/30 (4 addresses)

2. Using your previous answer, provide the forwarding tables for each of the three routers
(R1, R2, R3). Each table should contain two columns which show (i) the destination IP
prefix, and (ii) the corresponding output link.

The simplest way to create a forwarding table is to create a separate
rule for every subnet that we need to access.

If we take into account that the address ranges for different subnets do
not overlap, we dont have to worry about longest-prefix-length

matching.
Router 1:
Longest Prefix Match Outgoing: Interface:
11010110 01100001 11111111 110000 Port b
11010110 01100001 11111111 110001 Port ¢
11010110 01100001 11111111 10 Port ¢
11010110 01100001 11111111 0 Port b
11010110 01100001 11111110 Port a
Router 2:
Longest Prefix Match Outgoing : Interface:
11010110 01100001 11111111 110000 Portd
11010110 01100001 11111111 110001 Portd
11010110 01100001 11111111 10 Portd
11010110 01100001 11111111 0 Port e

11010110 01100001 11111110 Port d

Router 3:

Longest Prefix Match Outgoing: Interface:
11010110 01100001 11111111 110000 Port f
11010110 01100001 11111111 110001 Port f
11010110 01100001 11111111 10 Port g
11010110 01100001 11111111 0 Port f
11010110 01100001 11111110 Port f

3. Can you reduce the number of entries of each forwarding table, i.e., for each table create
an equivalent one, which has the same outcome but consists of fewer entries?

We can reduce the number of entries by grouping the Longest prefix
matches for the same outgoing interface, starting from the longest
matches (top-bottom). This will generate new entries with first column
being the longest prefix between all (or some) of those entries and
second column being the output port.

However, we need to be careful not to create conflict with an other
outgoing interface. For example, in the forwarding table of RI, we
would need to summarize the entries for Port ¢ with "11010110
01100001 11111111 1" (longest prefix match between "11010110
01100001 11111111 110001" and "11010110 01100001 11111111 10").
Then, if we wanted to summarize the entries for Port b we would need
to add an entry with prefix “11010110 01100001 11111111 (longest
prefix match between "11010110 01100001 11111111 110000" and
"11010110 01100001 11111111 0"). But if we use this prefix and place it
in the forwarding table, it would look like this:

Longest Prefix Match Outgoing: Interface:
11010110 01100001 11111111 1 Port ¢
11010110 01100001 11111111 Port b
11010110 01100001 11111110 Port a

Recall that the forwarding table must be ordered by the length of the
prefix in the Longest Prefix Match column (as shown in the previous
table). Therefore, when a router receives a packet, it will scan the
forwarding table in order (from longest prefix to shortest prefix) until it
matches the first compatible longest prefix match. In that case, a
packet matching “11010110 01100001 11111111 110000 ~ will be
forwarded to Port c instead of Port b (which is wrong, see the first line
of the original forwarding table). In this situation, the prefixes of Port
b can not be grouped.
Therefore, the tables with summarized entries are shown below.

Router 1:

Longest Prefix Match Outgoing Interface
11010110 01100001 11111111 110000 Port b
11010110 01100001 11111111 1 Port ¢
11010110 01100001 11111111 0 Port b
11010110 01100001 11111110 Port a
Router 2:
Longest Prefix Match Outgoing Interface
11010110 01100001 11111111 0 Port e
11010110 01100001 1111111 Port d
Router 3:
Longest Prefix Match Outgoing Interface
11010110 01100001 11111111 10 Port g
11010110 01100001 1111111 Port f

Exercise 3: practice prefix allocation

Consider the graph shown in Figure 2, which consists of four network subnets, 4, B, C
and D, all connected to the Internet through Router 3.

Y T -
~Internet
o ISP1)

N — 7 . 7
— e
Router 3

. 192.33.209.33

+192.33.209.34

)
/

N e

DN /': —

__Subr; (ﬁaxt/ C

Figure 2: Network topology.

Subnet 4 is attached to port @ of Router 1.
Subnet B is attached to port b of Router 1.
Subnet C is attached to port b of Router 2.
Subnet D has no hosts.

All hosts have access to the Internet, through an Internet Service Provider “ISP1”.

Assign network addresses to each of these four subnets, with the following constraints:

o All addresses must be allocated from 1.0.2.0/23 (in other words, they should have

binary format 00000001.00000000.0000001x.XXXXXXXX);

e subnets 4, B and C should have enough addresses to support 200, 100 and 50

interfaces, respectively;
e you should allocate the smallest possible range of IP addresses to each subnet;

e only in this exercise, assume subnets do not have a broadcast address (i.e., you should

not allocate it);
e for each subnet, the assignment should take the form a.b.c.d/x.

1. Subnet A: 200 interfaces. 2’ < 200 < 2°, so we need to reserve 2° =
256 IP addresses.

2. Subnet B: 100 interfaces. 2°< 100 < 27, so we need to reserve 2’ =
128 IP addresses.

3. Subnet C: 50 interfaces. 2° < 50 < 2° so we need to reserve 2°= 64
IP addpresses.

4. Subnet D: 2 interfaces. 2 = 2!, so we need to reserve 2 IP addresses.

From 1.0.2.0/23, a possible assignment would be:

1. Subnet A: 1.0.2.0/24 (256 addresses)
2. Subnet B: 1.0.3.0/25 (128 addresses)
3. Subnet C: 1.0.3.128/26 (64 addresses)
4. Subnet D: 1.0.3.192/31 (2 addresses)

Exercise 4: identify subnets

Consider the network in Figure 3, consisting of hosts A, B, C, D, G and H, DNS server E, web
server F, router R1 and switches S1, S2, S3 and S4.

Host A Host B Host C

——)
— ’
Switch S2 &

Switch S3 Web server F

Switch S4

Host G Host H

Figure 3: Network topology.

1. Allocate an IP prefix to each IP subnet that contains end-systems, following these rules:

* All addresses must be allocated from 10.0.0.0/24 (they should have the binary
format 00001010.00000000.00000000.xxxxxxxx), following the basic rules for
allocating IP addresses.

* You should allocate the smallest possible range of IP addresses to each subnet
(Note: be careful to consider only the network interfaces that should be assigned

an IP address)
The network consists of the following subnets:

Subnet 1: Hosts A, B, C, D, switches S1 and S2, and interface | of router
R1 (5 interfaces + I broadcast address = 6 addresses)

Subnet 2: DNS server E, web server F, switch S3 and interface m of router
R1 (3 interfaces + 1 broadcast address = 4 addresses)

Subnet 3: Hosts G and H, switch 4 and interface s of router R1 (3
interfaces + 1 broadcast address = 4 addresses)

The other interfaces belong to switches that as said in class, to keep things
simple, you don't need to assign IP addresses to link-layer switches, even
though, in reality, they also have IP addresses. A possible allocation of IP
address spaces for each subnet is:

Subnet 1: 10.0.0.0/29 or 10.0.0.0 — 10.0.0.7

Subnet 2: 10.0.0.8/30 or 10.0.0.8 — 10.0.0.11

Subnet 3: 10.0.0.12/30 or 10.0.0.12 — 10.0.0.15

We can use the binary representation to check that the allocation is correct:

00001010.00000000.00000000.00000000 or 10.0.0.0/29 (interface a)
00001010.00000000.00000000.00000001 or 10.0.0.1/29 (interface b)
00001010.00000000.00000000.00000010 or 10.0.0.2/29 (interface c)
00001010.00000000.00000000.00000011 or 10.0.0.3/29 (interface k)
00001010.00000000.00000000.00000100 or 10.0.0.4/29 (interface 1)
00001010.00000000.00000000.00000101 or 10.0.0.5/29 (not used)
00001010.00000000.00000000.00000110 or 10.0.0.6/29 (not used)
00001010.00000000.00000000.00000111 or 10.0.0.7/29 (broadcast addr.
for Subnet 1)

00001010.00000000.00000000.00001000 or 10.0.0.8/30 (interface m)
00001010.00000000.00000000.00001001 or 10.0.0.9/30 (interface q)
00001010.00000000.00000000.00001010 or 10.0.0.10/30 (interface r)
00001010.00000000.00000000.00001011 or 10.0.0.11/30 (broadcast addr.
for Subnet 2)

00001010.00000000.00000000.00001100 or 10.0.0.12/30 (interface s)
00001010.00000000.00000000.00001101 or 10.0.0.13/30 (interface w)
00001010.00000000.00000000.00001110 or 10.0.0.14/30 (interface x)
00001010.00000000.00000000.00001111 or 10.0.0.15/30 (broadcast addr.
for Subnet 3)

2. Fill Table 1 with the IP address for the network interfaces that should be assigned an IP
address. write "—" for interfaces for which an IP address is not needed.

Network interface | IP address
Example: y 1.2.3.4
Example: z -

a 10.0.0.0
b 10.0.0.1
¢ 10.0.0.2
d -

e -

f -

g -

h -

i -

Jj -

k 10.0.0.3
! 10.0.0.4
m 10.0.0.8
n -

o -

p -

q 10.0.0.9
r 10.0.0.10
S 10.0.0.12
t -

u -

v -

w 10.0.0.13
X 10.0.0.14

Table 1: IP address allocations for the interfaces from Figure 3

Exercise S: link-state routing

Consider the network in Figure 4. Execute the link-state (Dijkstra’s) algorithm we saw in class

to compute the least-cost path from each of x, v, and 7 to all the other routers.

Figure 4: Network topology.

The least cost path from routers x, v, and t to all the other routers is displayed

in the next table along with the execution steps of the link-state algorithm.

For each router i, C(i) stands for cost to i, and p(i) stands for predecessor to i.

1. Least-cost path from x to all network nodes.

step | nodes visited | C(1),p(t) | C(w).pw) | Cv).p(v) | Cw)pw) | C»).p(») | C).p(z)
0 X 0 o 3.x 6,x 6,x 8,x
/ X,V 7,v 6,v 3,x 6,x 6,x 8,x
2 X, vu 7,v 6,v 3,x 6,x 6,x 8,x
3 X,V U,W 7,v 6,v 3x 6,x 6,x 8,x
4 X, N u,w,y 7,V 6,v 3.x 6,x 0,x 8,x
5 X,V u,wy,t 7,v 6,v 3,x 6,x 6,x 8,x
6 X, u,wytz 7,v 6,v 3,x 6,x 6,x 8,x

2. Least-cost path from v to all network nodes.

step | nodes visited | C(t),pt) | Cu).p(uw) | Cw),p(w) | Cx).p(x) | CO).p(y) | Cz).p(z)

0 v 4y 3v 4v 3v 8, v o0

1 VX 4y 3v 4v 3v 8v 11,x
2 VX, U 4,y 3v 4,y 3,v 8,v 11,x
3 VX, U, t 4,y 3v 4y 3v 8,v 11,x
4 VX, U, t,W 4,y 3v 4,y 3v 8,v 11,x
5 VX, U LW,y 4y 3v 4 v 3v 8v 11,x
6 VX, U LW, Z 4,y 3v 4,y 3,v 8,v 11,x

3. Least-cost path from t to all network nodes.

step | nodes visited | C(u),p(u) | Cv),p(v) | Cw),p(w) | Cx).p(x) | CO).p(y) | Cz).p(z)
0 t 2t 4t o0 0 7.t 0
/ tu 2t 4t Su 0 7.t 0
2 tu,v 2t 4t Su 7.V 7.t 0
3 Lu,vw 2t 4t Su 7,v 7.t 0
4 L, VWX 2t 4t Su 7,v 7.t 15x
5 LU, VWX,V 2t 4t Su 7,v 7.t 15,x
6 LU, VWX,),Z 2t 4t Su 7,v 7.t 15,x

Exercise 6: distance-vector routing

Consider the network in Figure 5. Execute the distance-vector (Bellman-Ford) algorithm we saw in class
and show the information that router z knows after each iteration.

Figure 5: Network topology.

Each node in the topology has its own view of the network, which is
updated independently from other nodes at the end of each step.
Therefore, for every step of the algorithm, you also need to update each
of the other cost tables. Otherwise, your solution may be incorrect.

In our solution we only show the cost table for node z, as required by
the question. The cost table at node z consists of 5 columns (all possible
destinations) and 3 rows (all possible sources—one row for node z and
one row for each neighbor). Each entry of the table denotes the cost
between the associated source-destination nodes.

Initially (at step 0), node z has the following view of the network:
To

Fro [v] oo | o0 | oo | oo | o

8

N
8
SN
N 8
8
> 8

At step 1:

To

Fro |v]| I |0]3|xo]|6

At step 2:

1o

Fro v | 1103315

At step 3:

To

Fro v | 11013315

We see that from step 2 to step 3 the cost tables did not change,
indicating that the algorithm has converged.

Exercise 7: convergence

What is the maximum number of iterations required for the distance-vector (Bellman Ford)
algorithm that we saw in class to converge (i.e., to finish, assuming no change occurs in the
network graph and link costs)? Justify your answer.

At each iteration, a node exchanges cost tables with its neighbors. Thus, if you
are node A, and your neighbor is B, all of B's neighbors (which are all one or
two hops from you) will know the least-cost path of one or two hops to you
after one iteration (i.e., after B tells them its cost to you).

Let d be the “diameter” of the network, which is computed as follows:
* Find the least-cost path between each pair of nodes.

* The diameter is equal to the greatest length (in number of links) of

any of those least-cost paths.

Using the reasoning above, after d — 1 iterations, all nodes will know the
least-cost path of length < d hops to all other nodes. Since any path of length >
d hops is costlier than any of the least-cost paths, the cost tables of the nodes
will not change after that point. Hence, the algorithm converges in at most d —
1 iterations.

	CS-202 Exercises on Network Layer: IP & Routing (L15-L16)
	
	Before we start
	
	Exercise 1: IP prefix allocation​
	Exercise 2: network configuration
	
	Exercise 3: practice prefix allocation
	Exercise 4: identify subnets
	Exercise 5: link-state routing
	Exercise 6: distance-vector routing
	
	
	Exercise 7: convergence

